80 research outputs found

    The meaning of life in a developing universe

    Get PDF
    The evolution of life on Earth has produced an organism that is beginning to model and understand its own evolution and the possible future evolution of life in the universe. These models and associated evidence show that evolution on Earth has a trajectory. The scale over which living processes are organized cooperatively has increased progressively, as has its evolvability. Recent theoretical advances raise the possibility that this trajectory is itself part of a wider developmental process. According to these theories, the developmental process has been shaped by a larger evolutionary process that involves the reproduction of universes. This evolutionary process has tuned the key parameters of the universe to increase the likelihood that life will emerge and develop to produce outcomes that are successful in the larger process (e.g. a key outcome may be to produce life and intelligence that intentionally reproduces the universe and tunes the parameters of ‘offspring’ universes). Theory suggests that when life emerges on a planet, it moves along this trajectory of its own accord. However, at a particular point evolution will continue to advance only if organisms emerge that decide to advance the evolutionary process intentionally. The organisms must be prepared to make this commitment even though the ultimate nature and destination of the process is uncertain, and may forever remain unknown. Organisms that complete this transition to intentional evolution will drive the further development of life and intelligence in the universe. Humanity’s increasing understanding of the evolution of life in the universe is rapidly bringing it to the threshold of this major evolutionary transition

    The Temporal Singularity: time-accelerated simulated civilizations and their implications

    Full text link
    Provided significant future progress in artificial intelligence and computing, it may ultimately be possible to create multiple Artificial General Intelligences (AGIs), and possibly entire societies living within simulated environments. In that case, it should be possible to improve the problem solving capabilities of the system by increasing the speed of the simulation. If a minimal simulation with sufficient capabilities is created, it might manage to increase its own speed by accelerating progress in science and technology, in a way similar to the Technological Singularity. This may ultimately lead to large simulated civilizations unfolding at extreme temporal speedups, achieving what from the outside would look like a Temporal Singularity. Here we discuss the feasibility of the minimal simulation and the potential advantages, dangers, and connection to the Fermi paradox of the Temporal Singularity. The medium-term importance of the topic derives from the amount of computational power required to start the process, which could be available within the next decades, making the Temporal Singularity theoretically possible before the end of the century.Comment: To appear in the conference proceedings of the AGI-18 conference (published in the Springer's Lecture Notes in AI series

    Lack of Chemokine Signaling through CXCR5 Causes Increased Mortality, Ventricular Dilatation and Deranged Matrix during Cardiac Pressure Overload

    Get PDF
    RATIONALE: Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF), but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE: We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF. METHODS AND RESULTS: Mice harboring a systemic knockout of the CXCR5 (CXCR5(-/-)) displayed increased mortality during a follow-up of 80 days after aortic banding (AB). Following three weeks of AB, CXCR5(-/-) developed significant left ventricular (LV) dilatation compared to wild type (WT) mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs) that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs) were significantly reduced in AB CXCR5(-/-) compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5(-/-) mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment. CONCLUSIONS: Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly
    • …
    corecore